Cathodoluminescence imaging on quartz in sandstone

Overlay in the life sciences: A question of objectivity and accuracy

Posted by Kaitlin van Baarle on Aug 22, 2016 7:16:34 PM

It is rare that scientific research will rely on a single method. Instead, findings need to be built on multiple types of data to ensure accuracy. For this reason, overlaying images from different microscopes is often a chosen method for researchers, particularly in the life sciences. What is frequently combined is data from an electron microscope (EM) and a fluorescence microscope (FM). These images are then often “overlayed” for a complete picture of the data.

Read more →
0 Comments | Read/write comments

Correlative microscopy: Opening up worlds of information with fluorescence

Posted by Kaitlin van Baarle on Jul 28, 2016 12:43:21 PM

Scientists of all fields are most certainly familiar with the miniature worlds unearthed by electron microscopy. From the complex structures of viruses to extremely small forensic evidence, the revelations brought about by this technology have led to enormous developments in the scientific world. The wavelength of fast electrons is significantly smaller than that of visible light, creating images that were previously unobtainable with conventional light microscopy. For life scientists in particular, the main advantage of electron microscopy (from here on referred to as EM) is the contrast that the black-and-white high-resolution images reveal, providing essential information on the structure of a cell, organelle, or organic tissue.

Read more →
0 Comments | Read/write comments

Topics: correlative microscopy, life sciences


From the discovery of the electron to subwavelength microscopy: An introduction to cathodoluminescence

Posted by Kaitlin van Baarle on Jul 1, 2016 11:53:08 AM

In 1897, the electron was discovered by Sir Joseph John Thomson. The physicist and eventual Nobel Prize winner was in fact conducting research on “cathode rays”. At the time, cathode rays were only known as the consequence of an electric current that was passed through a vacuum tube. It was observed that electrically charged particles would collide with atoms at the end of the tube and excite them, thus causing them to fluoresce, or emit fluorescent light. It was further made evident that these were rays travelling in a straight line from one end of the tube to the next, by placing a shape in the middle of the tube and observing that very shape casting a shadow at the end of the tube.

Read more →
0 Comments | Read/write comments

Topics: materials science, cathodoluminescence


Super-resolution correlative microscopy: The perfect combination of function and structure

Posted by Kaitlin van Baarle on May 3, 2016 4:05:03 PM

As a researcher in the life sciences, your work will very likely involve studying various parts of a cell at small length scales. In particular, you may be interested in examining biomolecules and their function within the greater context of the cell as a whole. Recent technological and methodological developments in microscopy have made this process much more straightforward, with integrated fluorescence and electron microscopy. Such a system allows for automatically overlayed images from both an electron and a light microscope, providing you with the ability to identify certain organelles or biomolecules by tagging, at the same time that you are able to localize where they are situated within the cell. More recently, super-resolution fluorescence imaging has been developed, which opens up even greater opportunities for learning about the complexities of life.

Read more →
0 Comments | Read/write comments

Topics: correlative microscopy, life sciences


Thoughts on the various applications, techniques, and complications to be discovered in the fascinating fields of both cathodoluminescence and correlative light and electron microscopy.

Subscribe to Email Updates