SECOM, LAB Cube, photovoltaics • 1

Imaging biological specimens with correlative cathodoluminescence electron microscopy

Understanding of relationships between structure and function in biological specimen strongly depends on the imaging method. Achieving the proper balance between luminescence and high contrast to simultaneously study specific proteins but also to acquire ultrastructural information is one of the challenges of bioimaging.

Correlative light and electron microscopy (CLEM) is an imaging technique for optoelectronic investigation of structure-function relationships at the nanoscale, which has gained importance in recent years. However, the strong mismatch between optical and electron imaging resolutions is still a limiting factor for CLEM.

One technique that could be an attractive alternative is correlative cathodoluminescence electron microscopy (CCLEM). This bioimaging technique can be successfully used for studying the structure and composition of cells and tissues: with cathodoluminescence generated by an electron beam, it is possible to obtain luminescence data with a much higher spatial resolution than is attainable in a conventional optical microscope.

Correlative cathodoluminescence electron microscopy (CCLEM)

CCLEM allows to not only overcome a mismatch between optical and electron imaging resolutions, it also opens new possibilities for using luminescent labels. Commonly, organic fluorophores are used for labelling the biological specimen. However, with CCLEM technique inorganic materials, which emit photons upon electron beam exposure and are more stable, can be a good alternative.

Job Fermie