Cathodoluminescence imaging on quartz in sandstone

What is the difference between cathodoluminescence and other SEM techniques?

Posted by Delmic on Jan 9, 2020 12:45:00 PM

  • What are the most common SEM techniques for studying materials?

  • What kind of data can you get with these techniques?

  • What makes cathodoluminescence (CL) different from other SEM techniques?

  • 5 advantages of CL imaging

Read more →

How does cathodoluminescence for measuring photovoltaic materials work?

Posted by Delmic on Dec 10, 2019 1:30:00 PM

Are you interested in the possibilities of cathodoluminescence (CL) for photovoltaics (PV)? Are you eager to figure out how CL imaging works to measure and analyze thin-film solar cells and and other photovoltaic materials? For those who didn’t manage to join the webinar Cathodoluminescence for photovoltaics last month, the recording of this webinar is now available for you!

Read more →

How to Overcome Challenges of Perovskite Solar Cells Industry?

Posted by Delmic on Jan 22, 2019 1:00:00 PM

If you are working in the field of photovoltaics or optoelectronics, you know that perovskites, a group of materials that have ABX3 composition and a perovskite structure, have gained quite a lot of interest due to their exceptional performance in solar cell, light-emitting diode, laser, and water splitting devices.

Read more →

Cathodoluminescence intensity mapping: Adding an extra dimension to your research

Posted by Noor van der Veeken on Dec 8, 2016 11:00:00 AM

Those who understand the basic mechanisms of cathodoluminescence (CL) know that it is essentially a useful byproduct of electron microscopy. Fast electrons that are fired at a material cause it to become excited, thereby emitting photons of characteristic wavelengths. CL intensity measurement is one of the many useful methods using CL emission to obtain valuable information about your sample complementary to other techniques such as SE, BSE, EBSD or EDS.

This article further explains how CL intensity mapping exactly works and how it can be employed in various types of research.

Read more →

From the discovery of the electron to subwavelength microscopy: An introduction to cathodoluminescence

Posted by Kaitlin van Baarle on Jul 1, 2016 11:53:08 AM

In 1897, the electron was discovered by Sir Joseph John Thomson. The physicist and eventual Nobel Prize winner was in fact conducting research on “cathode rays”. At the time, cathode rays were only known as the consequence of an electric current that was passed through a vacuum tube. It was observed that electrically charged particles would collide with atoms at the end of the tube and excite them, thus causing them to fluoresce, or emit fluorescent light. It was further made evident that these were rays travelling in a straight line from one end of the tube to the next, by placing a shape in the middle of the tube and observing that very shape casting a shadow at the end of the tube.

Read more →

Thoughts on the various applications, techniques, and complications to be discovered in the fascinating fields of both cathodoluminescence and correlative light and electron microscopy.

If you are interested in the solutions we offer, you can request a quote below.

Request a quote

Subscribe to Email Updates

Recent Posts